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Abstract

The term HetNets (heterogeneous networks) is used to describe cellular networks

in which the capacity supply is heterogeneous due to the overlaid architecture of

macrocells and small-cells.

In this thesis we use the term HetHetNets to refer to cellular networks in which the

traffic demand is also heterogeneous due to reasons such as user spatial clustering and

diversified user traffic types, in addition to the heterogeneity in the capacity supply.

The main objective of this thesis is to study the essential problem of matching

the traffic demand (“load”) with the capacity supply (“capacity”) in resource-limited

HetHetNets; this problem is expected to be a major concern in the fifth generation

(5G) cellular networks.

This thesis proposes two approaches to address this problem. One approach is

to deploy small-cells to the centers of user clusters (put supply where needed), and

another approach is to guide users to the cells that are lightly loaded (load balancing

via spatial traffic shaping).

We first investigate how to model the spatial non-uniform (i.e., heterogeneous)

user distribution, and then the impact of user spatial heterogeneity on HetNets is

evaluated. Simulation-based analyses show that network performance deteriorates

significantly with the increase in user spatial heterogeneity if the user locations are

uncorrelated with the locations of the macro and small-cell base stations. Cluster

analysis on the non-uniform user points is then utilized to find the cluster centroids

as the potential locations for small-cells. Simulation results show that the network

performance can improve substantially with increasing user spatial heterogeneity if

we deploy small-cells in the appropriate locations.

The second approach is enabled by the recently developed user-in-the-loop (UIL)

paradigm. In the literature, there have been several investigations on load-aware

cell association as an approach to match traffic demand with the capacity supply,

in which a user may associate to a less loaded cell, even though that cell does not
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necessarily provide the maximum SINR. In other words, a user is associated with a cell

to get more share of resources at the cost of lower spectral efficiency. While, the UIL

approach can increase the user received SINR and the share of allocated resources at

the same time, which encourages a user to move to a new location that maximizes the

utility function considering received SINR, cell load and the probability of moving.

Numerical results show that the UIL can double the mean user rate in comparison

to the load-aware cell association strategy, and also results in a more balanced load

across the network.
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Chapter 1

Introduction

1.1 Definition

In wireless telecommunications, “heterogeneous networks (HetNets)” refers to net-

works that use different types of access nodes, e.g., relays, macrocells, picocells, and

femtocells (see Figure 1.1) [1] [2]. Different from the traditional tower-mounted macro-

cells, the distribution of small-cells† is more random and irregular. So the word

“heterogeneous” is often used to refer to the non-uniform spatial distribution of wire-

less nodes.

In contrast, on the traffic demand side, users are assumed to be of one class (e.g.,

best effort) and uniformly distributed in the most literature. In this thesis, we denote

the term “HetHetNet” as a cellular network with two dimensions of heterogeneity:

heterogeneous capacity supply and heterogeneous traffic demand. The term “Het-

HetNet” was used for the first time in paper [3]. This thesis puts emphasis on the

novel dimension, the demand perspective, with both the user traffic class and the user

spatial distribution being heterogeneous.

1.2 Problem Statement and Motivation

The performance of wireless networks depends highly on their spatial configura-

tion, not only because the signal-to-interference-plus-noise ratio (SINR) is related to

the transmitter-receiver distance, but also because the traffic load in spatial domain

influences the overall resource utilization, and hence, network performance. In the

† WiFi can be considered as one type of small-cell, nevertheless, WiFi off-loading is outside the
scope of this thesis.
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: An example of HetNets architecture.

context of HetNets, the traffic load plays a more significant role in user throughput

compared to the commonly used SINR metric [4]. Recently, stochastic geometry has

become increasingly popular in modeling the spatial distribution of the network en-

tities. The locations of the network entities are abstracted to a point process (PP)

based on their properties. The PPs that are commonly used in wireless networks

are (1) Poisson point process (PPP), (2) hard core point process (HCPP), and (3)

Poisson cluster process (PCP). The PPP is the most popular PP due to its simplicity

and tractability [5]. However, the research community mainly focuses on modeling

the locations of base stations (BSs) rather than the users (mobile devices) [5], [6].

In the majority of the papers in wireless networks, the user spatial distribution

is assumed to be random and uniform (homogeneous PPP) [6], and often with a

fixed number of users, which becomes a conditional PPP, or equivalently, binomial

PP (BPP) [7]. When the PPP model is used, the downlink analysis is performed

at a typical user at origin according to Slivnyak’s theorem [8], which states that the

statistics seen from a PPP is independent from the test location.

In recent years, some papers have introduced heterogeneity to user spatial dis-

tribution. For example, in the model used in [9], the user density decreases linearly

with respect to the distance from the BS up to a certain distance beyond which users

are uniformly distributed to the rest of the cell area. In [10], user locations are mod-

eled by a PCP. A parent PP Φ uniformly spreads Nc cluster heads over the coverage

region of a macrocell, and then users are dropped randomly and uniformly within a
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certain radius of each cluster head. Given a fixed total number of users, the degree

of user spatial heterogeneity is controlled by changing the number of cluster heads.

This method brings spatial heterogeneity to the user distribution, but due to the

integer nature of the number of cluster heads, the spatial heterogeneity cannot be

controlled in a continuous manner. In [11], both users and BS locations are modeled

by homogeneous PPPs with different intensities in the first step, and heterogeneous

user distribution is obtained by conditional thinning of BSs and the corresponding

users in the Voronoi cells of BSs. This method facilitates the deduction of analytical

expressions, yet the generated user distributions may not be entirely realistic because

of the absence of users in the thinned areas and the identical intensity of users in the

remaining areas.

The impact of non-uniform and BS-uncorrelated user distribution in a cellular

CDMA network has been investigated in [12], indicating that uniform distribution can

lead to an overestimation of the system capacity. In [9], the authors have shown that

the performance enhances when users are concentrating around the BSs in WCDMA

networks.

As such, three questions are raised: (1) How to model the heterogeneous user dis-

tribution in spatial domain (heterogeneous traffic demand)? (2) What is the impact

of user spatial heterogeneity on heterogeneous cellular networks (impact of hetero-

geneous traffic demand on heterogeneous capacity supply)? (3) What are the solutions

to combat the load imbalance between the traffic demand and the capacity supply in

HetHetNets?

1.3 Contributions and Organization

This thesis is intended to address the three questions that are raised in the previous

section with contributions and organization shown in Figure 1.2.

• First, a doubly stochastic Poisson process (DSPP), also known as the Cox pro-

cess, is proposed to model the user locations. With a single parameter, the spa-

tial heterogeneity is controlled smoothly in a broad range from uniform (PPP)

to extremely heterogeneous. This is introduced in Chapter 2.

• Second, the effect of user spatial heterogeneity (captured by C, to be defined

in Section 2.3) on the performance of downlink cellular networks is obtained.
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Figure 1.2: Contributions and organization

We find that the network performance metrics deteriorate significantly when

increasing C if the user locations are uncorrelated with the locations of the

macro and small-cell BSs. This is included in Chapter 3.

• Third, pushing capacity supply to traffic demand is the first approach we use

to address the third question raised in the previous section. Cluster analysis

on the non-uniform user points is utilized to find the cluster centroids as the

potential locations for small-cells. Simulation results show that the network

performance can improve substantially when increasing C if we take advantage

of user spatial heterogeneity to deploy small-cells in the appropriate locations.

This is included in Chapter 4.

• Alternatively, pushing traffic demand to capacity supply is the second approach

we propose to match the traffic imbalance in HetHetNets. By using the recently

developed user-in-the-loop (UIL) concept, users are encouraged to move to a

better location that has higher spectral efficiency and / or a lower traffic load.

Based on the context, the probability of moving is taken into consideration in

the utility function. Load balancing is achieved by the spatial movement of
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users which comply with the suggestions. Numerical results show that UIL can

double the mean user rate in comparison to the max-SINR or the load-aware

cell association strategy, and also result in a more balanced load across the

network. This is included in Chapter 5.

Besides, the user traffic type is also heterogeneous in this thesis. We investigate

users with finite rate demand in Chapter 3 and users with two traffic classes (best

effort and guaranteed bit rate) in Chapter 5.

The manuscripts developed (in full or in part) based on the work in this thesis

are listed below:

• M. Mirahsan, Z. Wang, R. Schoenen, H. Yanikomeroglu, and M. St-Hilaire,

“Unified and non-parameterized statistical modeling of temporal and spatial

traffic heterogeneity in wireless cellular networks,” in Proc. IEEE International

Conference on Communications (ICC) Workshop on 5G Technologies, Sydney,

Australia, June 2014. Section 2.3 is referenced from this paper.

• R. Schoenen, Z. Wang, H. Yanikomeroglu, G. Senarath, N. Dao, “System

and Method for Wireless Load Balancing”, U.S. Patent application number:

62/036,801, August 13, 2014.

• Z. Wang, R. Schoenen, H. Yanikomeroglu, and M. St-Hilaire, “The Impact

of User Spatial Heterogeneity on Heterogeneous Cellular Networks,” in Proc.

IEEE Global Communications Conference (Globecom) Workshop on Hetero-

geneous and Small Cell Networks, Austin, TX, USA, Dec. 2014. The work

in this paper is based on Chapters 2, 3 and 4.

• Z. Wang, R. Schoenen, H. Yanikomeroglu, and M. St-Hilaire, “Load Bal-

ancing in Cellular Networks with User-in-the-loop: A Spatial Traffic Shaping

Approach,” submitted to IEEE International Conference on Communications

(ICC), London, UK, June 2015. The content of this paper is based on Chapter

5.

• Z. Wang, R. Schoenen, H. Yanikomeroglu, and M. St-Hilaire, “Matching the

Traffic Demand with the Traffic Suppply in HetHetNets,” This the working title

for a paper in progress based on this thesis aiming for a journal submission.



Chapter 2

Model for User Spatial Heterogeneity

In this chapter, we first introduce the commonly used point processes (PPs) in the

literature, and then we introduce the PP that we adopt to model the heterogeneous

user distribution: the log Gaussian Cox process. The metric that is used to capture

the degree of the spatial heterogeneity is introduced next.

2.1 Point Processes in Stochastic Geometry

In stochastic geometry analysis, the locations of the network entities are repre-

sented by a PP that captures their properties. User locations in a wireless cellular

network in space domain can be modeled by a two-dimensional (2D) or three dimen-

sional (3D) point process. A very inclusive review of point processes in space domain

is conducted in [13]. Fixed distance between points generates perfect homogeneity

(lattice). Poissonian distribution generates complete randomness. For generating

sub-Poisson patterns, one way is to generate a perfect lattice and apply a random

perturbation on its points [14] [15]. For generating super-Poisson patterns, hierar-

chical randomness based on doubly stochastic clustering perturbation can be used.

Clustering perturbation of a given (parent) process Φ consists of independent replica-

tion and displacement of points of Φ. All replicas of x ∈ Φ form a cluster. A survey

of super-Poisson processes in space domain can be found in [13].

In this section, we first define the most popular PPs used in wireless communica-

tions, and then we propose the PP that we adopt to model the heterogeneous user

spatial distribution.

6



CHAPTER 2. MODEL FOR USER SPATIAL HETEROGENEITY 7

2.1.1 Poisson Point Process

A PP is a Poisson point process (PPP) if and only if the number of points inside

any compact set B ⊂ R
d is a Poisson random variable, and the numbers of points in

disjoint sets are independent. For example, if the average intensity is λ, the number

of points in a compact set B ⊂ R
d is a Poisson variable with mean λ · LB, where LB

is the Lebesgue measure (also called n-dimensional volume) of the set B. For n =

1, 2, or 3, LB coincides with the standard measure of length, area, or volume. In

this thesis, the term “PPP” refers to the homogeneous PPP, in which the intensity is

constant throughout the service area.

The PPP is the most popular and the most important PP in wireless communi-

cations for its simplicity, tractability, and independence property [5]. Models based

on PPP have been used for packet radio networks for more than three decades [16],

and the performance of PPP-based networks has been well characterized and under-

stood [5]. Recent studies led by Professor Jeffery G. Andrews’s group have used PPP

to model the locations of BSs and users in HetNets [6] [17].

The PPP is important also because it is the basic model to construct more com-

plicated point processes, such as the Matérn Hard Core Point Process (HCPP) and

Poisson Cluster Process (PCP) introduced in the coming subsections.

2.1.2 Binomial Point Process

A PP is a Binomial point process (PPP) if and only if the number of points inside

any compact set B ⊂ R
d is a binomial random variable, and the numbers of points

in disjoint sets are related via a multinomial distribution. For example, if the total

number of points in the service area is n and the average intensity of points is λ, the

number of points in a compact set B ⊂ R
d follows a Binomial distribution b(n, p)

with p = λ · LB.

Note that any realization of a finite PPP (or conditional PPP) is a BPP with

the number of realized points [7]. In wireless communications, if the total number

of nodes is known and the service area is finite (e.g., a fixed number of picocells are

dropped in a finite service area in this thesis), then the BPP is used to model the

network entities.
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2.1.3 Hard Core Point Process

An HCPP is a point process that no two points of the process coexist with a

distance less than a hard core threshold. HCPP is derived by applying a specific

thinning regarding the hardcore distance on the underlying (or parent) PP. When it

is constructed from a PPP, it is called a Poisson HCPP or Matérn HCPP.

In cellular networks, the BSs and the users cannot be very close to each other,

e.g., in 3GPP release 9 [18], the minimum distance of a small-cell to the existing

macrocells is 75 meters, and the minimum distance between a user to a macrocell is

35 meters. In [19], Matérn HCPP is used to model the active cognitive femtocells in

a two-tier HetNet.

2.1.4 Poisson Cluster Process

The PCP is constructed from a parent PPP by replacing each point with a cluster

of points. When the cluster points are within a disc of radius (around the cluster

center) and are realizations of a PPP, it is called a Matérn cluster process. For

example, a Matérn cluster process can be constructed in two steps. First, generate a

PPP Φ with intensity λ0 (λ0 > 0), and then replace each point xi ∈ Φ with a cluster

of points. The points of each cluster are within a disc of R of its cluster center from

the parent process Φ, and the distribution of them is a realization of another PPP

with intensity λ1 (λ1 > 0).

A PCP is used in [10] to model the users around the femtocells. First a number

of femtocells are dropped in the service area using a BPP (PPP with a finite number

of points), and then a fixed number (instead of Poisson variable) of users are dropped

within a certain radius of the femtocells randomly and uniformly.

A realization of a PPP and its corresponding HCPP and PCP are shown in Figure

2.1.

2.2 Log Gaussian Cox Process

Packet arrivals in time domain can be modeled by a one dimensional (1D) point

process. A fixed inter-arrival time (IAT) between packets generates maximum ho-

mogeneity (lattice). Exponentially distributed IAT generates complete randomness

(Poisson). Various models for generating super-Poisson patterns (patterns with more
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Figure 2.1: A realization of a PPP and its corresponding HCPP and PCP: (a) PPP
in a 20 m × 20 m region with intensity 0.1 points/m2, (b) HCPP in a 20 m
× 20 m region for the parent PPP in (a) and hard core parameter r = 1 m,
each point of the HCPP lies at the center of a non-overlapping circles with
radius r represented by the circles, (c) PCP in a 20 m × 20 m region for the
parent PPP in (a) and clusters with a Poisson distributed number of points
with mean 2 uniformly distributed in a unit circle neighborhood (i.e., Matérn
cluster process), the parent PPP points are plotted with crosses (“+”) while
the added cluster points are plotted with dots.
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Figure 2.2: An example of the intensity maps of a PPP and a LGCP

heterogeneity than Poisson) have been proposed in the literature which are mostly

based on hierarchical randomness and Markov models [20] [21] [22].

In this thesis, we propose to use the Cox process, a generalization of the PPP, to

model the spatial heterogeneity of the user distribution. Instead of being constant

as in PPP, the intensity in Cox is itself a stochastic process [8]. An example of the

intensity maps of a PPP and a LGCP is shown in Figure 2.2. It is first studied by Cox

under the name doubly stochastic Poisson process (DSPP), for the reason that it can

be viewed as a two randomization procedure. A process Λ is used to generate another

process Φ by acting as its intensity, which means that Φ is a PPP conditional on Λ

(if Λ is deterministic, then Φ is a PPP). For example, in a homogeneous PPP with

intensity λ, the number of points in a bounded Borel set B ⊂ R
2 is Poisson distributed

with mean λ ·AB, where AB is the area of B. While in the Cox process, the number

of points in B is Poisson distributed with a mean intensity Λ̄ =
∫
B
Λ(s) ds, s ∈ B,

where Λ(·) is an intensity function. From the definition, and also as the name DSPP

implies, Cox process brings a second layer of randomness to the Poisson process by

generalizing the constant intensity λ into a intensity function Λ(·). By varying Λ(·),
we get different kinds of Cox processes.

A Cox process is called a log Gaussian Cox process (LGCP) if Λ(s) = exp{Y (s)},
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Figure 2.3: An example of user distribution with different deviation in LGCP. The
PPP is the special case of LGCP (when σ equals to zero). Each dot represents an
active user in the system. With the measure that will be discussed in Section 2.3,
the degree of spatial heterogeneity C equals to 1.00, 1.44, 2.70, 4.72, respectively.

where Y = {Y (s) : s ∈ R
2} is a real-valued Gaussian process (i.e., the joint distribu-

tion of any finite vector (Y (s1), ..., Y (sn)) is Gaussian) [23]. The distribution of Y is

specified by the mean μ = E(Y (s)), the variance σ2 = V ar(Y (s)), and the covariance

COV (Y (si), Y (sj))
†. In this thesis, we assume COV (Y (si), Y (sj)) = 0 for i �= j,

indicating no correlation within Λ(·).
†The COV used here for “covariance” should not be confused with CoV used for “coefficient of



CHAPTER 2. MODEL FOR USER SPATIAL HETEROGENEITY 12

The distribution of Λ(·) is specified by the mean m = exp(μ+σ2/2) and the vari-

ance v = exp(2μ + σ2)(exp(σ2) − 1). Due to the exponential nature of the intensity

function Λ(·), the LGCP provides a wide range of intensity values with a small varia-

tion in σ. When σ is equal to zero, Λ becomes constant, and the LGCP falls back to

a homogeneous PPP. By increasing σ (and changing μ accordingly to keep the over-

all user intensity m constant), the intensity Λ becomes more fluctuating (higher v),

resulting in higher spatial heterogeneity over the whole area. A realization of LGCP

with different σ values is shown in Figure 2.3. Note that σ can take any nonnegative

real value continuously from 0 to infinity, which facilities the smooth control of the

user spatial heterogeneity.

The implementation of LGCP involves two steps. First the Gaussian field is

generated in the minimum square that contains the coverage area of all the cells (in

this thesis, the 19 hexagons). We adopt the method in [23] by discretizing the square

into tiles‡ and approximating the Gaussian process by the values of the corresponding

Gaussian distribution on the tiles. Then the Gaussian field Ỹ = (ỹij)(i,j∈I) is obtained,

where I represents all the tiles after discretization. In the second step, for the given

Gaussian field Ỹ , a homogeneous PPP with intensity λ̃ = exp(ỹij) is generated in

each tile.

2.3 Measure of User Spatial Heterogeneity

Before we evaluate the network performance with respect to adjustable user spatial

heterogeneity, we need a statistical measure to capture the degree of spatial hetero-

geneity. This section introduces the method first proposed in my previous co-authored

work [24], in which measures based on the Voronoi and Delaunay tessellations are

used.

variation” defined in Section 2.3.
‡A coarse discretization results in a small sample size, and hence a decreased statistical variation,

while a refined discretization may result in an unrealistic situation (e.g., many users squeezed in a
small area) and higher computational complexity. For the simulations in this thesis, we find that it
is sufficient to use 40× 40 tiles (i.e., a total number of 1600 tiles for the square enclosing area).
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2.3.1 Related Work

A 1D point process in time domain can be measured mathematically in many

different ways. One may use the interval counts N(a; b] = Nb−Na which is a density-

based metric and divide the whole domain into smaller windows and count the number

of process points in each window. A disadvantage of density-based metrics is that they

are parameterized by the window size. Finding an appropriate window size is itself

a challenging question and cannot be answered generally for all applications. Inter-

arrival time Ii = Ti+1 − Ti is the most popular and best-accepted metric because it

is distance-based rather than density-based and considers the distance between every

two neighboring points in domain. Considering CoV (C), the normalized second-order

statistic, defined as the ratio of standard deviation to the mean, for 1D-lattice, the

constant IAT has CI = 0. For a 1D-Poisson pattern, CI = 1 since for an exponential

distribution with parameter λ the standard deviation and the mean are both μI =

σI = λ. Sub-Poisson processes have 0 < CI < 1 and super-Poisson processes have

CI > 1.

As mentioned above, in time domain, the inter-arrival time captures heterogeneity

by one nonparameterized real value CI . In multi-dimensions, however, there is no

natural ordering of the points, so finding the analogue of the inter-arrival time is

not easy. There are many density-based heterogeneity metrics in the literature like

Ripleys K-function and pair correlation function [13] but they are all parameterized.

For introducing distance-based metrics, the problem is about defining the next point

or the neighboring points in multi-dimensional domains. The first and the simplest

candidate for characterizing neighboring points in multi-dimensional domain is the

nearest-neighbor. This leads to the nearest-neighbor distance metric [25]. However,

the nearest-neighbor distance metric in 1D time domain is not the analogue of the

inter-arrival time because it is considering the min(Ii; Ii+1) for every point Ti. So the

nearest neighbor fails to capture the process statistics in multi-dimensional domains

because it only considers the nearest neighbor and ignores the other neighbors. The

next candidate is the distance to the kth neighbor. However, determining k globally

is not possible because every point may have different number of neighbors. All the

above mentioned metrics either require a parameter (the setting of which is itself a

question), or do not capture the statistics in a proper way. So we need a nonpa-

rameterized metric that can measure the spatial heterogeneity in multi-dimensional

domain like the inter-arrival time in one-dimensional time domain.
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Figure 2.4: Voronoi (dashed lines) and Delaunay (solid lines) tessellations [24].

2.3.2 Unified and Nonparameterized Metrics

Given a point pattern P = {p1, p2, ..., pn} in d-dimensional space R
d, the Voronoi

tessellation T = {Cp1, Cp2, ..., Cpn} is the set of cells such that every location, y ∈ cpi,

is closer to pi than any other point in P . This can be expressed formally as

cpi = {y ∈ R
d : | y − pi | ≤ | y − pj | for i, j ∈ 1, ..., n} (2.1)

The Voronoi tessellation in R
d has the property that each of its vertices is given

by the intersection of exactly d + 1 Voronoi cells. The corresponding d + 1 points

define a Delaunay cell. So the two tessellations are said to be dual. Figure 2.4

demonstrates a pattern of points with its Voronoi tessellation (dashed lines) and

Delaunay tessellations (solid lines).

Every two points sharing a common edge in the Voronoi tessellation or equiva-

lently every two connected points in the Delaunay tessellation of a point process are

called natural neighbors. This gives an inspiration of neighboring relation in multi-

dimensional domains and leads us to the well accepted inter-arrival time metric in

multi-dimensions. Various statistical inferences based on different properties of cells

generated by these tessellations can be considered for measurement of a point pattern.

Voronoi Cell Area or Voronoi Cell Volume V is the first natural choice. For a
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Table 2.1: Basic statistics of distance-based measures for a PPP in one, two and
three dimensions [24]. λ is the exponential distribution parameter for inter-
arrival time and Λ is the mean intensity of point processes.

Distance-based measures Statistics 1D 2D 3D

Nearest-neighbor distance (G)

Mean (μ) 0.5λ−1 0.5Λ−0.5 0.5539Λ−0.33

Variance (σ2) 0.25λ−2 0.0683Λ−1 0.04Λ−0.66

CoV (C) 1 0.653 0.364

Voronoi cell area/volume (V)

Mean (μ) λ−1 Λ−1 Λ−1

Variance (σ2) λ−2 0.28Λ−2 0.18Λ−2

CoV (C) 1 0.529 0.424

Delaunay cell edge length (E)

Mean (μ) λ−1 1.131Λ−0.5 1.237Λ−0.33

Variance (σ2) λ−2 0.31Λ−1 0.185Λ−0.66

CoV (C) 1 0.492 0.347

lattice process, all the cell areas in 2D or cell volumes in 3D are equal and CoV =

0. The statistics of the Voronoi cells for a Poisson point process (Poisson-Voronoi

Tessellation) are well investigated in the literature [26–30]. Square rooted Voronoi

cell area in 2D or cube rooted Voronoi cell volume in 3D can also be considered.

The next proposed metric is the Delaunay edge length E. The statistics for the

Delaunay tessellations are investigated in [31–33]. The mean value of the lengths of

Delaunay edges of every point M can also be considered.

A Delaunay tessellation divides the space to triangles or tetrahedrons in 2D and

3D, respectively. The area distribution of the triangles or the volume distribution of

tetrahedrons T can determine the properties of the underlying pattern.

Voronoi and Delaunay tessellations can be applied on a 1D process which models

traffic in time domain. In this case, the introduced distance-based metrics are con-

verted to time domain metrics. Basic statistics of these metrics for a Poisson point

process in one, two and three dimensions are summarized in Table 2.1.

In order to use the above mentioned metrics as an analogue of inter-arrival time,

one needs to normalize their CoV to the CoV values of inter-arrival time in the

time domain. For the complete homogeneity case, the CoV values are already zero
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like inter-arrival time. To normalize the CoV values of complete random case to

1, it is required to divide the metrics by the values presented in Table 2.1. After

normalization, C is larger than 1 in super-Poisson processes, equal to 1 in PPP, and

between 0 and 1 in sub-Poisson processes. The LGCP introduced in the previous

section brings more heterogeneity to the PPP, so it is super-Poisson processes with

C equal to or greater than 1. For example, for the user distributions in Figure 2.3,

we first draw the Voronoi tessellations for the user points, and measure the area of

each Voronoi cell, Ai. Then the CoV of A is calculated from the ratio of the standard

deviation and the mean of A. Finally, the spatial heterogeneity level C is obtained

from the normalized CoV.

2.4 Summary

In this chapter, we propose the Cox process, a generalization of the PPP, to

model the spatial heterogeneity of the user distribution. Instead of being constant

as in PPP, the intensity in Cox is itself a stochastic process [8]. By varying the

intensity function, we get different kinds of Cox processes. To get a broad range of

heterogeneity of intensity, we propose to use the log Gaussian Cox process to model

the user spatial heterogeneity. With a single parameter, the spatial heterogeneity is

controlled smoothly in a broad range from uniform (PPP) to extremely heterogeneous.

To measure the degree of spatial heterogeneity, this thesis adopts the method

introduced in my previous co-authored work [24], in which measures based on the

Voronoi and Delaunay tessellations are proposed, and coefficient of variation, the

normalized second-order statistic (the standard deviation divided by the mean), is

suggested to be used to capture the main statistical properties of the measures. The

statistics of PPP are used as the normalization factors to normalize those of the sub-

Poisson processes and super-Poisson processes. Then, the user spatial heterogeneity

can be represented by a non-negative real number C, the normalized CoV of different

measures (e.g., the Voronoi cell area used in this thesis). Based on the formulation,

C is greater than 1 in super-Poisson processes, equal to 1 in PPP, and between 0 and

1 in sub-Poisson processes. The LGCP introduces more heterogeneity in PPP, so it is

a super-Poisson point process in which PPP constitutes a special case (when σ = 0).



Chapter 3

The Impact of User Spatial Heterogeneity

In this chapter, we use the user spatial model discussed in the previous chapter

to generate the heterogeneous user distributions (independently with the locations

of BSs), and evaluate the network performance with respect to the degree of user

spatial heterogeneity (C) under different network configurations. More precisely, the

guidelines of performance evaluation from ITU is introduced in the first section, and

the finite user rate demand model with the corresponding resource allocation scheme

is discussed in the next section. The performance evaluation comes next with the

impact of user spatial heterogeneity and the impact of finite rate demand evaluated

respectively.

3.1 Guidelines of Performance Evaluation

A static snapshot-based system-level simulator is used. The system simulation

parameters for performance evaluation in this thesis mainly follows the guidelines in

ITU-R report M.2135 [34], the guidelines for evaluation of radio interface technologies

for IMT-Advanced. As the parameters for small-cells are not available in this ITU

guidelines, this thesis also opts for the settings in 3GPP release 9 [18] for small-cell

parameters. Matlab is the software we use in our simulation.

The following principles are followed in the system simulations:

• Users are dropped independently over predefined area of the network layout.

The distribution of users is modeled from homogeneous to extremely hetero-

geneous. Each mobile corresponds to an active user session that runs for the

duration of the drop.

17
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• Users are randomly assigned line-of-sight (LOS) and non-line-of-sight (NLOS)

channel conditions based on LOS probability, which is a function of BS-user

distance.

• Each user associate with one cell as serving cell, regrading to the cell selection

scheme specified in the thesis.

• For a given drop, the simulation is run and then the process is repeated with

the users dropped at new random locations. A sufficient number of drops are

simulated to ensure the convergence in the user and system performance metrics.

• Performance statistics are collected taking into account the wrap-around con-

figuration in the network layout to eliminate the boundary effect.

• As long as a cell (macro or small-cell) is serving one or more users, it is assumed

that this cell is contributing to interference at the full transmit power level to

other cells in the downlink.

The simulation of the system behaviour is carried out as a sequence of drops,

where a drop is defined as one simulation run over a certain time period. A drop (or

snapshot) is a simulation entity where the random properties of the channel remain

constant. In a simulation, the number of drops have to be selected properly by the

evaluation requirements and the deployed scenario. Sufficient drops are needed to get

statistically representative results. Consecutive drops are independent.

3.1.1 Network Layout

The deployment scenario is based on the urban macrocell scenario described in

ITU-R M.2135 [34], in which the locations of the macrocell sites are fixed and form

a hexagonal grid layout as shown in Figure 3.1. 19 sites, each with 3 cells, with

inter-site distance (ISD) of 500 meters, are configured in the system. The wrap-

around technique is applied in the simulations to eliminate the boundary effect. The

HetNets consist of two tiers with small-cells (not shown in Figure 3.1) overlaid on the

same area of macrocells. The macrocells adopt directional antennas while small-cells

use omni antennas. The distribution of small-cells is either according to a BPP or

user-distribution related.
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Figure 3.1: Macrocell geometry: A total number of 19 sites and 57 cells [34].

In typical urban macrocell scenario, the mobile station is located outdoors at

street level and the fixed base station clearly above the surrounding building heights.

The channel model for urban macrocell scenario is called urban macro (UMa) [34].

3.1.2 Antenna Characteristics

This subsection specifies the antenna characteristics, e.g. antenna pattern, gain,

side-lobe level, orientation, etc., for antennas at the BS and the user terminal (UT),

which shall be applied for the evaluation in the deployment scenarios with the hexag-

onal grid layout.

The horizontal antenna pattern used for each BS sector† is specified as

A(θ) = −min

[
12

(
θ

θ3dB

)2

, Am

]
, (3.1)

where A(θ) is the relative antenna gain (dB) in the direction θ, 180◦ ≤ θ ≤ 180◦, and

θ3dB is the 3 dB beamwidth, and Am = 20 dB is the maximum attenuation. Figure

†A sector is equivalent to a cell in this thesis.
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Figure 3.2: Antenna pattern for 3-sector cells [34].

3.2 shows the BS antenna pattern for 3 sector cells to be used in the system level

simulations.

A similar antenna pattern will be used for elevation in simulations that need it.

In this case, the antenna pattern will be given by:

Ae(φ) = −min

[
12

(
φ− φtilt

φ3dB

)2

, Am

]
, (3.2)

where Ae(φ) is the relative antenna gain (dB) in the elevation direction, φ, 90◦ ≤
φ ≤ 90◦, and φ3dB is the elevation 3 dB value. φtilt is the tilt angle. The combined

antenna pattern at angles off the cardinal axes is computed as

−min [− (A (θ) + Ae (φ)) , Am] . (3.3)

The antenna bearing is defined as the angle between the main antenna lobe center

and a line directed east given in degrees. The bearing angle increases in a clockwise

direction. Figure 3.3 shows the hexagonal cell and its three sectors with the antenna

bearing orientation proposed for the simulations. The center directions of the main
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Figure 3.3: Antenna bearing orientation diagram. [34].

antenna lobe in each sector points to the corresponding side of the hexagon. The UT

antenna is assumed to be omni directional.

3.1.3 Channel Model

The downlink signal experiences path loss and shadowing, and the fast fading is

assumed to be averaged out. For macrocell-only netwroks, the path loss model is the

UMa model from ITU-R M.2135 [34], which is shown in Table 3.1. The probability

of LOS is calculated as

PLOS = min(18/d, 1)× (1− exp(−d/36)) + exp(−d/36), (3.4)

where d is the distance between the BS and the UT in meters. The lognormal shadow-

ing is used, and the standard deviation σ in the Gaussian distributed random variable

is defined in Table 3.1.

For HetNets, the path loss model is based on the 3GPP model 2 in depolyment

scenario case 6.2 [18], in which outdoor picocells are the small-cells that are layered

on macrocells to cover the hot-spots. Table 3.2 shows the key parameters used in the

(1) d′BP is the break point distance. d′BP = 4h′
BSh

′
UT fc/c, where fc is the center frequency

(Hz), c is the propagation velocity in free space, and h′
BS and h′

UT are the effective antenna heights
at the BS and the UT, respectively.
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Table 3.1: Path loss model [34]

Table 3.2: Simulation parameters in Chapter 3 and Chapter 4

Parameter Assumption

Macrocell layout Hexagonal grid of 19 x 3 = 57 macrocells with wrap-around

ISD 500 m

Picocell layout 1 or 2 picocells per macrocell, BPP or user distribution related

Average user density 25 users / macrocell

System bandwidth 10 MHz (FDD) at 2 GHz

Shadowing Log-normal, s.d. 4 for LOS, 6 for NLOS

Macrocell Tx power 46 dBm

Picocell Tx power 37 dBm

Antenna gain Macrocell: 17 dBi, picocell: 5 dBi

CRE biasing value 2 dB

Traffic model Full buffer or finite rate demand

simulations for Chapter 3 and Chapter 4.
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3.2 Finite User Rate Demand and Resource Allo-

cation Scheme

Users are assumed to have best effort service in the vast majority of the papers

when using static snapshot-based simulations, and correspondingly, BSs are assumed

to serve with full buffer. This assumption can be reasonable when users are homo-

geneously distributed. However, when users are heterogeneously distributed, chances

are that some cells will only serve a few users. As a result, these users will reach

very high data rate due to the abundance of available resources. This will affect the

metrics like the sum or the mean user rate as the unrealistic high rate of a small

portion of users will increase the total or mean value significantly. Besides, users

have finite rate demand in reality; one user in a cell will not necessarily consume all

the channels.

Sophisticated traffic models are available in the literature, however, as time is in-

volved in the model, a more complicated dynamic event-driven simulation platform is

needed. As this chapter investigates the influence of spatial traffic (user distribution)

instead of temporal traffic on network performance, a time-free traffic model and the

corresponding resource allocation scheme are needed.

We assume all users have the same finite rate demand, rd. Future models may

consider it as a variable with different characteristics based on the nature of different

classes of traffic. Suppose n users in a cell with spectral efficiency si, so the resource

needed for each user to reach the rate rd is rd/si. When rd is small, the total resource

needed
∑n

i
rd
si
is lower than the available resource W . This status is called the under-

load region. When rd increases, total resource needed
∑n

i
rd
si

is getting closer to the

available resource W . The first saturation point shows when all resources are

allocated, which relates to the equal rate resource allocation strategy in best effort

situation. In equal rate resource allocation scheme, resource allocated to user i with

spectral efficiency si is

wi =
W

si ·
∑n

i
1
si

, (3.5)

and the rate reached by all users is

r =
W∑n
i

1
si

. (3.6)
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(a) Resource allocation at first saturation point

(b) Resource allocation in saturated region

(c) Resource allocation at second saturation point

Figure 3.4: Illustration of resource allocation scheme for finite user rate demand.
The numbers in the graphs have no unit, as they are just used as illustrations.
The 20 users are sorted based on the spectral efficiency from 20 to 1. In the
first graph, the first saturation point is showed, when all users reached the rate
demand rd (20 as shown by the secondary y axis) and resources are mainly
used by the low-spectral-efficiency users. For example, user 1 gets only 1 unit
of resource while user 20 gets 20 units. When increase the rate demand rd to
100, user 1 get 5 units resource to reach the demand, the resource for the rest
of users increase or decrease proportionally (from red bar to blue bar in (b)).
The second saturation point occurs when resources are equally allocated and
the users reach a rate that is proportional to their spectral efficiency.
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When rd increases after this point, the network enters a saturated region, i.e.,

all resources are used. To use the resource more efficiently, we take a certain amount

of resource from the users with low spectral efficiency and give them to the users

with high spectral efficiency, enabling the latter reach rd. This process continues till

all users get equal amount of resource. We call this point the second saturation

point, which relates to the equal resource allocation strategy in best effort situation.

This process is illustrated in Figure 3.4.

Beyond this point, to let the high spectral efficiency users reach the demand rate,

more resources will be allocated to them till the extreme case where the network only

serves the user with the best channel condition. In this case, the fairness deteriorates

extremely. We will keep resource equally allocated after the second saturation point,

and no users, even the one with the highest spectral efficiency, will achieve rd after

this point. This region is called the over-saturated region, in which resources are

equally allocated among all the uses. The rate reached for user i for equal resource

allocation situation is

ri = si · W
ni

, (3.7)

where ni represents the number of users in the same cell with user i. The two

saturation points and the three regions are shown in Figure 3.5, in which the mean

user rate of a typical cell is shown with respect to the rate demand rd.

When rd increases, the system will reach two saturation points. The first one refers

to best effort situation with equal rate allocation strategy, and the second one refers to

the best effort situation with equal resource allocation strategy. The curves in Figure

3.5 show how the mean rate of the users in a cell changes with the increase of rd,

and how it matches with the rate if best effort is assumed. Before the first saturation

point, i.e., the under-load region, the demands are fully satisfied, which makes the

mean user rate equals to the rate demand. After that, the networks enters in the

saturated region and the mean rate changes linearly because we adjust the resource

proportionally from low spectral efficiency users to the high spectral efficiency users,

till all resources are equally allocated. Figure 3.6 shows the effect on all the users in

the system, and because different cells reach the saturation points at different time,

the mean rate of all users does not change linearly. A similar resource allocation

scheme considering real-time and non-real-time users is available in [35].



CHAPTER 3. THE IMPACT OF USER SPATIAL HETEROGENEITY 26

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate limit for all users in a typical cell [Mbps]

M
ea

n 
us

er
 ra

te
 [M

bp
s]

rate of best effort with equal resource allocation

rate of best effort with equal rate allocation

first saturation point

saturated region

under−load region

over−saturated region

second saturation point

Figure 3.5: Mean user rate of the users in a typical cell with the proposed resource
allocation scheme.
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Figure 3.7: Mean user rate versus user spatial heterogeneity under different network
configurations. The user distribution is a PPP when C equals to 1. Picocell
locations are uniform and random based on a BPP, independent with the loca-
tions of macrocell and users.

3.3 Performance Evaluation

The user spatial distribution and the user traffic model are two distinguish features

so far in this thesis. In this section, we first evaluate the impact of user spatial

heterogeneity on macro-only networks and HetNets with different number of small-

cells, under the assumption that users are served with best effort. Then the impact

of finite rate demand model is evaluated next with the same settings.

3.3.1 The Impact of User Spatial Heterogeneity

We change the value of σ in LGCP to get user distributions with different hetero-

geneities, which are measured by C, the normalized CoV of the Voronoi cell area in

the Voronoi tessellations of the user points. When C is equal to 1, the user distribu-

tion forms a PPP. Performance metrics are evaluated in three scenarios: macro-only

networks, pico-enhanced networks with the number of picocells equal to 57 and 114

(on average, 1 and 2 picocells per macrocell). Picocells are deployed according to
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Figure 3.8: Median user rate versus user spatial heterogeneity under different network
configurations.

a BPP in the macrocell covered area (as mentioned before, since the total number

of picocells is fixed, the distribution of them is a conditional PPP, or equivalently,

BPP [7]).

The metrics recommended in 3GPP [18] are used in the simulation, which are

the mean rate, median rate, and the 5% worst user rate. Because the overall density

of users in LGCP is kept constant, the mean user rate is proportional to the sum

throughout of the network, while the median user rate separates users into two halves.

The 5th percentile user rate is a metric commonly used to indicate the rates of low-

SINR users, however, under non-uniform distribution of both traffic demand and

capacity supply, the users that belong to this tail-rate user group may not necessarily

be the low-SINR receivers, but the low share-of-resource receivers.

As we can see from Figure 3.7, Figure 3.8 and Figure 3.9, the above mentioned

three metrics all deteriorate significantly with the increase in user spatial hetero-

geneity. This is due to the fact that when users are more spatially heterogeneous,

there is a high chance that parts of the network will be highly congested, resulting in

very low user rates; while the other parts of the network will be underused or even

totally empty. This is true for both macro-only networks and pico-enhanced HetNets

where picocells are randomly deployed. In terms of sensitivity, the 5th percentile
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Figure 3.9: 5th percentile of user rate versus user spatial heterogeneity under different
network configurations.

user rate is the most sensitive metric (curve goes down most rapidly), as the higher

user spatial heterogeneity makes the share of resource for each user more divergent,

resulting in a lower 5th percentile rate.

3.3.2 The Impact of Finite Rate Demand

We assume all users have the same rate limit rd as in Section 3.2.

Similar to Section 3.3.1, we evaluate the network performance with respect to user

spatial heterogeneity under different user demand rates. The network configuration

is unchanged in this evaluation. It is composed of 57 macrocells and 57 randomly

distributed picocells. Figure 3.10 shows the mean user rate versus the user spatial

heterogeneity under different rate limit. They all decrease monotonically with the

increase in user spatial heterogeneity, and the finite user rate demand decreases the

mean user rate significantly compared to the best effort model.
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Figure 3.10: Mean user rate versus user spatial heterogeneity under different rate
limit.

3.4 Summary

In this chapter, we introduce the guidelines of the performance evaluation from

ITU and 3GPP. The simulation setup including network layout, antenna character-

istics, and channel model is presented. Instead of best effort model for user traffic,

we propose a finite user rate demand model, in which users have a fixed rate demand

rd. A corresponding resource allocation scheme regarding increasing rd is proposed.

Finally, network performance is evaluated with increasing user spatial heterogeneity

under different network configurations, and the results show that the network perfor-

mance deteriorates significantly if user locations are uncorrelated with BS locations.

The impact of finite user rate demand is also evaluated, which shows that the finite

rate model decreases the mean user rate compared to the commonly used best effort

model.



Chapter 4

Pushing Capacity Supply to Traffic

Demand

With a spatially non-uniform user distribution, some areas of the network may

have no user or only few users, and hence the resources of the BSs in those areas are

either totally wasted or underused. On the other side, the so-called hot-spot areas

may be congested with users inside suffering from low rates. One solution to this

problem is to deploy small-cells in the user hot-spots to offload traffic from macrocells.

HetNets with small-cells overlaid on macrocells have intensely been researched in

recent years, yet the distribution of small-cells is assumed to be a BPP in most of

the papers. However, given an inhomogeneously distributed set of users (as proposed

in this thesis), how to find the hot-spots from the user distribution to deploy small-

cells is a natural, yet non-trivial, question. This is especially true for the operator-

planned picocells, which are deployed by the network operators based on the traffic

distribution.

In this chapter, we first present the related work regarding the small-cell deploy-

ment (or placement) strategies, and then we propose a heuristic cluster-analysis-based

small-cell deployment method. Network performance is evaluated next with com-

parisons between the proposed small-cell deployment method and the independent

random method used in Chapter 3.

4.1 Related Work

The impact of placement of small-cells on downlink performance for cellular net-

works is evaluated in [36], in which users are deployed along the boundaries of the

31
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cells and the frequency reuse scheme between macrocells and microcells is studied

inside. The impact of relay station placement on the network performance in the

IEEE 802.16j network is studied in [37], in which a heuristic algorithm is proposed to

determine the number and locations of relay station deployment, with a given user

distribution and deployment budget. The user distribution is random or concentrated

in one hotspot with a certain probability. Relay deployment in cellular networks is in-

vestigated in [38], and femto-cell self-deployment in a multi-room indoor environment

is studied in [39].

The work in [40] has a similar considerations regarding small-cell deployment

with the method we proposed. In this paper, a Gibbs sampling method is proposed

to jointly optimize the locations of small-cell BSs in a multi-cell network with the

goal of maximizing any given network utility function. Both of our methods have two

considerations: (1) placing small-cells close to the high-traffic areas; and (2) avoiding

co-channel interference with the macrocells. However, the traffic in this paper is not

modeled by a general heterogeneous user distribution as in this thesis. Instead, it

is determined by a traffic profile, in which a predefined traffic density map is used.

The area of interest is a rectangular area, and is divided into a number of rectangular

mini-cells. Each mini-cell has different traffic density and the small-cells are proposed

to deployed in the centers of the mini-cells.

4.2 Cluster Analysis

The cluster analysis technique groups data into clusters such that the objects in the

same cluster are more similar to each other than to those in a different cluster. This

is a main task in data mining and has played an important role in a wide variety of

fields, including machine learning, image analysis, and information retrieval [41]. This

section uses the cluster analysis technique to find the user clusters as the potential

locations for small-cells.

4.2.1 Basic k-means Algorithm

The k-means algorithm is one of the most popular clustering algorithms used

in the cluster analysis. It is a prototype-based, partitional clustering technique that

attempts to find a user-specified number of clusters (k) represented by their centroids.
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The centroids are the mean of the points that belong to the cluster. The basic k-means

algorithm [41] is described below.

Algorithm Basic k-means Algorithm

1: Select k points as initial centroids.
2: repeat
3: Form k clusters by assigning each point to its closest centroid.
4: Recompute the centroid of each cluster.
5: until Centroids do not change.

4.2.2 Preprocessing and Postprocessing

As we intend to use the centroids of the clusters to deploy small-cells, outlier

users (isolated points) that are supposed to be served by macrocells are not taken

into account. We apply preprocessing to eliminate the isolated points from affecting

the locations of the centroids. A classification method of points in another density-

based clustering algorithm, DBSCAN [41], is used. All points are defined as being (1)

in the interior of a dense region (i.e., a core point), (2) on the edge of a dense region

(i.e., a border point), or (3) in a sparsely occupied region (i.e., a noise or background

point). More precisely, a point is a core point if the number of points within a certain

threshold radius of its neighborhood exceeds a certain threshold. A border point is

the point that falls within the neighborhood of a core point but that is not a core

point. A noise point is any point that is neither a core point nor a border point.

They are illustrated in Figure 4.1. After the classification, the noise points (outlier

users) are eliminated before applying the k-means algorithm. An example is shown

in Figure 4.2.

The planned number of small-cells can be used as the value of k in the k-means

algorithm. However, since the users may not naturally be clustered into k groups,

the clusters that are obtained from the k-means algorithm may turn out to be too big

for the coverage of a typical small-cell. In other words, a centroid may turn out to

be in the middle of two or more natural user clusters when k is small. A simple yet

effective way to avoid this situation is to enlarge k by splitting the clusters (by running

clustering algorithm iteratively inside the cluster), a technique that is commonly used



CHAPTER 4. PUSHING CAPACITY SUPPLY TO TRAFFIC DEMAND 34

Figure 4.1: An example of core, border, and noise points. The threshold number of
points is 5 in this example.

in the postprocessing for cluster analysis [41]. In our case, all clusters that have a

larger radius than the typical coverage distance of the planned small-cells are split

after the k-means clustering algorithm. After the postprocessing, k′ (greater than or

equal to k) clusters are obtained. An example of cluster splitting is shown in Figure

4.3.

4.2.3 Selection Criteria

After postprocessing, more than k clusters are obtained, potentially k′ hot-spots.

As only k small-cells are planned, a selection criterion is needed to choose k clusters

from the k′ clusters generated by the clustering algorithm.

A simple way is to determine the number of points ni in each cluster i, and then

to choose the top k out of k′ clusters with respect to the number of points in them.

However, when a cluster is close to a macrocell, a small-cell deployed in such a hot-spot

will suffer substantial interference from the macrocell in a co-channel scenario. Even

in a non-co-channel scenario, deploying small-cells close to the center of a macrocell

is not as efficient as deploying them at the edge of a macrocell, as the latter improves

the user spectral efficiency and provides more capacity at the same time.

In this thesis, we use the ratio of the distance between a user and a macrocell,

and that between a user and a potential small-cell, as a component in the objective

function to select k hot-spots from k′ clusters. We will also use the number of users
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(a) Original user points

(b) User points with outlier users removed

Figure 4.2: Example of noise points elimination in preprocessing of k-means.



CHAPTER 4. PUSHING CAPACITY SUPPLY TO TRAFFIC DEMAND 36

(a) After k-means clustering

(b) After splitting

Figure 4.3: Example of k-means clustering and the splitting in postprocess.
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criterion as the baseline method for comparison in Section 4.3. An example of cluster

selection based on the number of users in the cluster and the objective function is

shown in Figure 4.4.

Suppose that there are ni users in a cluster i; for these ni users, d
(m)
j and d

(s)
j

represent the distances of user j to its closest macrocell, and to its cluster centroid

(the location of the planned small-cell), respectively. The proposed selection criterion

for cluster i is formulated as

Ui =
1

ni

ni∑
j=1

log
d
(m)
j

d
(s)
j

. (4.1)

This objective function is basically derived from the Shannon formula and the path

loss expression. The goal is to select k clusters that have maximum sum user rate,∑
Rj, which is proportional to the mean of the sum spectral efficiency 1

ni

∑
j log(1 +

SINRj) when equal resource allocation is used. In our situation, it is reasonable

to ignore the background noise and assume a high signal-to-interference-ratio (SIR)

as users are close to the proposed small-cells. So the objective function becomes
1
ni

∑
j log(SIRj). Let us assume that the dominant interferer, which is from the closest

macrocell, is the only interferer, and that both signal power and interference power

are calculated from the a power-law based path-loss model with the same exponent.

Then
∑

j log(SIRj) becomes proportional to
∑

j log(d
(m)
j /d

(s)
j ), the sum-logarithm

of the ratio of the user to closest-macro distance to the user to planned-small-cell

distance. Since this objective function is formed under several assumptions, it is

rather approximate. However, this is not a concern, because this objective function

is not used for evaluation; it is rather used for ranking the candidates (clusters).

If interference coordination between the macrocells and the small-cells within its

coverage is used, the function can be adapted to have the second nearest neighbor

macrocell as the main interference source.

4.3 Performance Evaluation

4.3.1 Small-cell Deployment Strategy

This part evaluates the network performance with respect to user spatial hetero-

geneity under two different small-cell deployment strategies: 1) random and uniform



CHAPTER 4. PUSHING CAPACITY SUPPLY TO TRAFFIC DEMAND 38

(a) Selection based on number of points in the cluster

(b) Selection based on the proposed objective function

Figure 4.4: Example of different cluster selection criteria. The clusters on the top
graph with red circle are the clusters that are too close to macrocells. They
are not chosen in the proposed selection method shown in the graph below,
instead, the clusters (blue circle) in cell edge are chosen. There is a cluster near
the origin (in the center of all hexagons) which is selected to deploy a small cell
near macrocell in both methods because of its high user density.
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(BPP), and 2) centroids of clusters obtained by cluster analysis. The number of pico-

cells is kept to 57 in this section. For cluster selection, two criteria are compared: the

number of users in the cluster and the proposed objective function defined in (4.1).

As we can see from Fig. 4.5, in comparison to the BPP strategy shown in the

bottom curve (identical to the middle curve in Figure 3.7), the cluster center strategy

with the proposed objective function discussed in Section 4.2.3 improves the mean

user rate by more than 50%. Besides, instead of decreasing monotonically with the

increasing user spatial heterogeneity, the mean user rate increases first and then de-

creases when cluster analysis is applied for choosing picocell locations. The cluster

center strategy performs better than the BPP strategy because of two reasons: 1) by

bringing small-cells to the centers of the traffic demand, the load among the cells be-

comes more balanced; 2) the spectral efficiency is improved since the distance between

the transmitters and receivers is shortened. However, a higher user spatial hetero-

geneity (more or larger user clusters) is beneficial to spectral efficiency improvement

with appropriately deployed small-cells, but may also make the traffic load more im-

balanced. When the traffic imbalance caused by user spatial heterogeneity outweighs

the capacities of all the small-cells, the performance goes down. This observation gives

us the insight that a certain degree of user spatial heterogeneity can be explored by

correlating the locations of users and small-cells in HetNets.

4.3.2 Fairness Index

The widely used Jain’s index is evaluated to quantify the rate fairness among all

the users. Note that the fairness evaluated here is different from the commonly used

measure that indicates whether users or applications are receiving a fair share of the

system resources. In this section, we use Jain’s index to measure the fairness of all

users in the system in terms of the rate. It is defined as

J (x1, x2, ..., xn) =
(
∑n

i=1 xi)
2

n ·∑n
i=1 x

2
i

, (4.2)

where n denotes the number of users and xi denotes the user rate for user i. Figure

4.6 shows the fairness index versus user spatial heterogeneity under different network

configurations.
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Figure 4.5: Mean user rate versus user spatial heterogeneity with different small-cell
deployment strategies and different cluster selection methods.
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The fairness index goes down monotonically when users are more heterogeneously

distributed in the marco-only networks, and in HetNets where small-cells are ran-

domly and uniformly deployed (BPP); the Jain’s index is even worse in the latter.

The downwards trend is because of the fact that the increasing spatial heterogeneity

causes more resource imbalance. The performance gap between the macro-only net-

works and HetNets is as a result of the randomly located picocells which serve only

a small portion of the users, letting them reach high rates (which in turn worsens

the fairness index). Similar to Figure 4.5, when picocells are deployed based on the

clustering algorithm introduced in Section 4.2, the fairness index rises first and then

goes down with the increasing user spatial heterogeneity.

4.4 Summary

This section proposes the first approach to combat the traffic imbalance problem

in HetHet cellular networks (HetHetNets), which is to push capacity supply to the

traffic demand. By using the cluster analysis technique, the user cluster centers are

obtained from the non-uniform user points as the potential small-cell locations. A

selection method that considers the relative distance between user to macrocells and

user to potential small-cells is introduced to choose clusters to deploy small-cells. It

is observed that if small-cells are deployed based on the user spatial distributions, the

performance of HetNets can benefit from the increase in user spatial heterogeneity

up to a certain degree.



Chapter 5

Pushing Traffic Demand to Capacity

Supply

Other than pushing capacity supply to traffic demand as in Chapter 4, a dual

approach for load balancing with traffic shaping by user-in-loop (UIL) is introduced

in this chapter. We show that the spectral efficiency for the users and the load

balancing for the system can be improved at the same time, resulting in significant

network performance enhancement.

The rest of this chapter is organized as follows. First the related work is investi-

gated in Section 5.1, including load-aware cell association and UIL concept.

In Section 5.2, the system model for spatial traffic shaping is introduced. The

diagram inside explains how the user is incorporated as part of a closed-loop con-

trol system. A machine learning functionality is also included in the system for the

UIL controller to better predict the user behavior, which provides more relevant and

accurate suggestions.

In Section 5.3, a scenario model with two traffic classes is proposed, guaranteed

bit rate (GBR) and best effort (BE). A resource allocation scheme to guarantee the

priority of the GBR users over the BE users is also provided. Besides the traffic classes,

the spatial distribution of users is also non-uniform, modeled by a log Gaussian Cox

process introduced in Chapter 2.

In Section 5.4, the utility function for the UIL controller is introduced. Based

on the nature of the system, a sequential greedy method is used to find a suitable

location suggestion for each user, and the associated cell is generated automatically

within the algorithm.

A load-aware cell association approach for load balancing without traffic shaping

42
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is introduced in Section 5.5. By using the same user model and resource allocation

policy as the UIL approach, it is evaluated in comparison with the performance of

the UIL approach in the numerical analysis part, Section 5.6.

5.1 Related Work

In HetNets, due to the disparities between macrocell BSs and small-cell BSs in

terms of transmit power, antenna gain, and antenna height, the coverage sizes of

these two types of BSs are massively disparate. As such, the conventional max-SINR

(associate the user to the cell whose SINR is maximum) cell association strategy

results in significant traffic imbalance in HetNets, a major source of performance

degradation [42].

There are two possible approaches to push traffic demand to capacity supply in

load balancing: (1) users are stationary but are associated with cells by taking load

into consideration; and (2) users are a part of control loop and can be encouraged to

relocate based on the load of the cells. The first approach relates to load-aware cell

association, and the second spatial traffic shaping method is the approach we propose

in this chapter.

Recently, load-aware cell association has been considered extensively in the liter-

ature as an approach to load balancing. In this approach, users are assumed to be

stationary, and the association relation is the result of an optimization problem. The

objective of the optimization problem is usually the sum of the utility function of all

the users, and the utility function is the function of user rate in most cases, e.g., the

logarithm of user rate in [43] [44] [45]. This approach is further introduced in Section

5.5.

The UIL concept [46–54] aims at controlling the user (“layer-8”) behavior in a

wireless system to achieve a better performance of both the user and the network

by convincing the users to move from one location to a better one or to avoid traffic

congestion by postponing session traffic out of the busy hours. Based on the impact

dimension, the approach is called spatial or temporal UIL control (this work only

involves spatial UIL). In both cases, the user is within, as part of, a closed-loop

control system.

In [47], the authors show that substantial cell spectral efficiency gain is obtained

with the use of UIL. In [51], the economic aspect of the UIL concept is investigated



CHAPTER 5. PUSHING TRAFFIC DEMAND TO CAPACITY SUPPLY 44

in order to find relevant business cases for the operators and the wireless subscribers.

The proposed temporal UIL in [50] resolves congestion situations in the busy hour

and manages to let users reduce their rate of video traffic and data traffic (downloads)

because of the increased dynamic price. The approach in [50] is comparable to the

intention of the smart grid, with the additional feature of service classes. In [48], the

question about what incentives will lead to what user reaction is answered based on

survey results. Thus we are able to quantitatively describe the user behavior in a

system theoretic framework.

Under the concept of the UIL, this thesis goes further with a utility function that

incorporates cell-level load factor, potential SINR and the user moving probability,

which leads to a novel spatial traffic shaping approach to load balancing.

5.2 System Model for Spatial Traffic Shaping

Under the paradigm of UIL, users are suggested opportunistically to move to a

new location according to operator recommendation and incentive displayed on the

user terminal. Users can choose to or not to comply with the suggestion for better

service and better rewards (depending on the content of the incentive). In this thesis,

the new location is the place where the user will receive higher SINR and/or more

resource share, and the user is willing to move to. It is given by the UIL controller

(see Figure 5.1) based on the utility function, which considers SINR maps of all cells

(the potential spectral efficiencies of the new locations with different cells), the load

factor of each cell and the probability of moving to different locations (related to

application class, user behavior and so on). Load balancing is achieved by the spatial

movement of users which comply with the suggestions. By shaping the traffic spatial

distribution, the traffic demand is controlled to meet the capacity supply better, the

distribution of which usually stays unchanged once the placement of BSs has been

completed.

The UIL system theoretic model for traffic shaping is shown in Figure 5.1. Instead

of assuming users being a traffic generator and consumer as a black box only, the UIL

framework allows a control input into the user block, on which the user receives

suggestions and incentives (i.e., progressive tariffs, reward points, higher access rates,

or even environmental indicators) in order to convince him to move to a new location.

The control information (CI) is sent from the UIL controller in form of suggestions
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Figure 5.1: The UIL system theoretic model diagram. The UIL system theoretic
model is a closed loop with the user included in the system to control. The
user’s output is the action of complying or not with the suggestions. As we
have multiple users in a cell, the arcs between controller, user, and the system
are vectorized for m users.

on the user terminal graphical interface (e.g., a map with directions). The suggestion

is opportunistic (not mandatory) and users can choose to comply or not. The action

of the users (cooperate or not) is then returned to the cellular network system. The

suggestions are the main output of the UIL controller based on the utility function

discussed in Section 5.4, and the incentive is set by the operator considering factors

like the current tariffs, the marketing policy, the network congestion degree, and so

on.

The input of the UIL controller includes three components which are: 1) the map

information from the database, 2) the user probability of moving, P , from the user

behavior learning center, and 3) the cell load information, L, from the cellular network

system. The map information includes city map that facilitates the movement of users

and the spectral efficiency map used to calculate the utility function. The spectral

efficiency map is generated from the network with the measurement from all the

user terminals being accumulated and statistically averaged. It is relatively constant

and only needs to be updated when the network configuration or the city landscape

changes.

P is the output of the user behavior learning center, which learns the user behavior

under different circumstances. For example, the probability of user u with quality of
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service (QoS) q to move distance d with incentive i within the user’s context c can be

formulated as Pu(d, q, i, c). A QoS level may be real-time, non-real-time, or extensions

based on contract, e.g., gold, silver, or bronze. The incentive may take different forms:

financial bonus, penalty, extra capacity, or even environmental indicators. The user’s

context c can be various. The user may be known to be immobile, for example in a

stadium. The user may be known to pay all penalties and discard all incentives. The

user options may be set to suppress all UIL suggestions. The user and application

may be postpone intolerant as it might be the case with a business phone call. The

connectivity of the user to other peers nearby may be part of the context as well.

Other human, social or technical aspects may also be part of the context. The initial

P could be quite general. For example, it could be the function of distance d and QoS

q alone as we used it in the numerical analysis in Section 5.3.3. With the evolution of

machine learning, more specific output could be possible, e.g., the probability of one

specific user at a specific location to move to another specific location at a specific

time.

While the map information and the value of P are being provided from an offline

database, the cell load L is included in the closed loop and is updated simultaneously

when a new user session arrives to or departs from the system.

5.3 User Model

5.3.1 User Traffic Classes

Unlike most papers in the literature which assume one class of users only (best

effort or best effort with minimum rate), we model users with two different service

classes: guaranteed bit rate (GBR) and best effort (BE). An example of these two

service types could be real-time video application and FTP/HTTP download, respec-

tively. The GBR users have a guaranteed rate and a higher priority, while BE users

share all the resources in the cell that are not used by GBR users. In this work, we

assume that GBR users are guaranteed a fixed rate r when the service is available or

receive no service at all (i.e., outage) if the resources are not enough for the user to

reach the guaranteed rate r.
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5.3.2 Resource Allocation

We denote by C the set of all cells (including macrocells and small-cells). The total

resources of a cell j ∈ C, denoted by Wj, are shared among all the users associated

with it. The resources can be time or frequency slots, or both. In our model, GBR

users have higher priority and are allocated the exact amount of resources they need.

For a GBR user i with spectral efficiency sij from cell j, the amount of resources

needed from cell j to reach the guaranteed rate r is

wij =
r

sij
. (5.1)

sij is derived from the Shannon formula,

sij = log

(
1 +

Pjgij∑
h∈C,h �=j Phgih + σ2

)
, (5.2)

where Pj is the transmit power of cell j, gij denotes the channel gain between user i

and cell j. The channel gain includes antenna gain, path loss and shadowing. Fast

fading is not considered here as an averaged SINR is assumed over the session length.

σ2 represents the noise power in SINR.

When a new GBR user i arrives to cell j, the user will be allocated the exact

amount of resources wij that is needed if

Wj −
∑

i′∈Ug(i)

ai′jwi′j > wij, (5.3)

where Wj is the total resources of the cell j. ai′j is the association indicator (i.e.,

ai′j = 1, if user i′ is associated with cell j, ai′j = 0 otherwise) and Ug(i) is the set

of the existing GBR users at the moment when user i arrives to the system. If the

Inequality (5.3) does not hold, this GBR user will be blocked, which results in the

outage of this GBR user.

The BE users equally share the remaining resources that are not used by the GBR

users. For example, when a new BE user k arrives to the system, the resources will

be reallocated to these nb
j(k) + 1 users, where nb

j(k) is the number of the existing

BE users associated with cell j at the moment when user k arrives. The amount of
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Figure 5.2: Empirical CCDF and exponential fit for data service and suggested UIL
movement with a discount and penalty incentive (fit Equations (5.5) and (5.7),
respectively) [48].

resources allocated to user k is

wkj =
Wj −

∑
i∈Ug(k) aijwij

nb
j(k) + 1

. (5.4)

Because of the outage mechanism of the GBR users, wkj is always positive, which

means each BE user will be served no matter how little resources are allocated.

Minimum rate demand for BE users can be added to the model, which will result in

possible outage for BE users as well. Note that the arrival of a GBR user i to cell j

also triggers the reallocation of resources for all nb
j(i) BE users in the same cell.

5.3.3 Probability of Moving: the P function

In this thesis, we construct the P function from Pu(d, q, i), i.e., the function of

moving distance, QoS, and incentive, without considering c, the user’s context as

introduced in Section 5.2. We adopt the data from [48], in which user behavior is

modeled based on survey results. Three types of services (QoS) were included in the

questionnaire: data, video, and voice. We take the results of data and video as the

behavior model for our BE and GBR users, respectively.

The spatial UIL motivated relocation for data service of d meters is shown as
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complementary cumulative distribution function (CCDF) in Figure 5.2, first with a

discount incentive δ and second with a surcharge penalty π. i is the corresponding

integer index. The results show a clear control ratio. The numeric fits for the data

service (BE users) are as follows [48]:

δi=1 = −20% ⇒ p = e−0.0244·d

δi=2 = −40% ⇒ p = e−0.0164·d

δi=3 = −60% ⇒ p = e−0.0117·d

δi=4 = −80% ⇒ p = e−0.0082·d

(5.5)

p = e(−0.0285+0.0053·i)·d = e(−0.0285−0.0265·δ)·d (5.6)

πi=1 = +020% ⇒ p = e−0.0291·d

πi=2 = +040% ⇒ p = e−0.0202·d

πi=3 = +060% ⇒ p = e−0.0144·d

πi=4 = +080% ⇒ p = e−0.0121·d

πi=5 = +100% ⇒ p = e−0.0099·d

(5.7)

p = e(−0.0311+0.0047·i)·d = e(−0.0311−0.0235·π)·d (5.8)

The spatial UIL motivated relocation for video service of d meters is shown as

complementary cumulative distribution function (CCDF) in Figure 5.3, first with a

discount incentive δ and second with a surcharge penalty π. The numeric fits for the

video service (GBR users) are as follows [48]:

δi=1 = −20% ⇒ p = e−0.0276·d

δi=2 = −40% ⇒ p = e−0.0192·d

δi=3 = −60% ⇒ p = e−0.0127·d

δi=4 = −80% ⇒ p = e−0.0090·d

(5.9)

p = e(−0.0327+0.0062·i)·d = e(−0.0327−0.0310·δ)·d (5.10)
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Figure 5.3: Empirical CCDF and exponential fit for video service and suggested UIL
movement with a discount and penalty surcharge incentive (fit Equations (5.9)
and 5.11, respectively) [48].

πi=1 = +020% ⇒ p = e−0.0328·d

πi=2 = +040% ⇒ p = e−0.0234·d

πi=3 = +060% ⇒ p = e−0.0176·d

πi=4 = +080% ⇒ p = e−0.0129·d

πi=5 = +100% ⇒ p = e−0.0123·d

(5.11)

p = e(−0.0352+0.0051·i)·d = e(−0.0352−0.0255·π)·d (5.12)

More information can be found in [48]. All the results confirm the general intuitive

trends:

• The acceptance p drops with effort (distance d in spatial domain as the case in

this thesis).

• A stronger incentive is followed with more acceptance.

• A more forceful penalty also leads to more obedience.

5.4 Proposed UIL Load Balancing Approach

The UIL controller outputs the control information with the suggestion of the

potential location based on the maximization of a utility function. The objective
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utility function combines three factors: the SINR value of different locations from

each cell, the load of each cell, and the probability of moving from the current location

to the potential locations.

Note that the utility function formulated in this section is just one way to combine

all the three factors that are considered in this thesis. In our formulation, all the three

factors are treated equally, i.e., they are of the same order in the function. Other

formulations are also possible.

5.4.1 Utility Function of GBR Users

The utility function of a GBR user i with cell j is formulated as

Uij(x, y) = pi(x, y) · sj(x, y) · (1− ρbj(i)), (5.13)

where pi(x, y) is the probability of user i moving from his current location to the new

location with coordinates (x, y), sj(x, y) is the spectral efficiency map of cell j, and

ρbj(i) ∈ [0, 1] is the load factor of cell j for the existing GBR users at the moment

when user i arrives to the system. ρbj(i) is defined as

ρbj(i) =

∑
i′∈Ug(i) ai′jwi′j

Wj

, (5.14)

where ai′j is a known matrix indicating the association relation of all the GBR users

at the moment when user i arrives to the system, and is updated each time after a

new user’s decision is made.

So for each new user arriving to the system, we get a three dimensional matrix.

The first dimension is the cell index, and the other two dimensions are the coordinates

of the map.

5.4.2 Utility Function of BE Users

The utility function of the BE users is similar to that of the GBR users, except

the load factor. The utility function of a BE user k with a cell j ∈ C is formulated as

Ukj(x, y) = pk(x, y) · sj(x, y) ·
(1− ρbj(k))

nb
j(k) + 1

, (5.15)
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where ρbj(k), as defined in (5.14), is the load factor of cell j of existing GBR users

when the BE user k arrives to the system. nb
j(k) is the number of the BE users in

cell j when user k arrives to the system.

5.4.3 Sequential Optimization

Due to the fact that each user, or more precisely, each session, arrives to the

system sequentially and it is inappropriate to suggest a user to move more than once

during one data session, we use a greedy algorithm to optimize the utility function for

each user sequentially based on the network situation at the moment the user arrives.

Another benefit of the sequential optimization in this system is that the system knows

the actions of the preceding users, or the system can predict their actions based on

their probabilities of moving obtained from the completed optimization problems.

Different from dynamic programming, the algorithm never reconsiders its choices,

i.e., a user will not receive a second suggestion during one data session even though

the network load has changed (and it may be better to move to another location)

after he receives the first suggestion.

For a new GBR user i, we conduct a exhaustive search on the utility function

Uij(x, y) of all the cells and locations based on the current load information. The

optimization problem is formulated as

max
j,x,y

Uij(x, y)

s.t. Wj −
∑

i′∈Ug(i)

ai′jwi′j >
r

sj(x, y)

x ∈ [0, X]

y ∈ [0, Y ]

j ∈ C,

(5.16)

where x and y take discrete values from the range X and Y based on the resolutions

of the map. The matrix ai′j, which shows the association relation of all the existing

GBR users to the associated cells at the moment the user i arrives to the system, is

a know matrix for each new user. The exhaustive search over the three dimensional

matrix provides the optimal value for U� for user i and the corresponding values of

the variables, i.e., the optimal associated cell j� and the optimal location (x�, y�).

The probability of user i to move to the optimal location (x�, y�) is obtained from
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the P function of this user, pi(x
�, y�), which we denote as p�i .

The first constraint in the problem guarantees that there are enough resources

in the potential cell for user i to reach rate r. If no cell is feasible because of the

constrain, it means there is no location in any cells that can provide the spectral

efficiency and the required resources to make this user reach the guaranteed bit rate,

or such a location does exist yet this user has zero probability to move there based

on our P function (e.g., too far from the current location), an outage of this GBR

user happens and no suggestion will be given.

As users only have probabilities to move within a short distance, i.e., p(i, j) equals

to zero if the potential locations are far from the users, so it is realistic for the UIL

controller to do the exhaustive search over all of the cells in a very short time and to

provide suggestions to each user when the sessions start.

The optimization problem for the BE users is similar to the GBR users except

that it comes without the first constraint that guarantees the amount of resources

available as in (5.16).

In the simulation, the action of the user can be modeled as a Bernoulli trial. A

random number between 0 and 1 is generated and is compared to the p�i . This user

moves if the random number is smaller than p�i , stays otherwise. If user i complies

with the suggestion, the location of this user will be changed to (x�, y�), and cell j�

will be assigned as the associated cell for this user, i.e., aij� = 1. If the user chooses

to stay without moving, he will be associated with the cell that provides the best

SINR value. After the decision is made for each user, the association matrix ai′j is

updated as an input to calculate the load factor for the next user.

5.4.4 An Example of Load Balancing Achieved by UIL

In this section, we provide an example of a typical user associating with a cell based

on the previously introduced utility function. A user is located as shown by the red

cross in Figure 5.4 (a), and the probabilities of this user to move from the current

location to other locations are shown in 5.4 (b). The probability P is calculated from

Equation (5.9). A max-spectral-efficiency map is shown in Figure 5.4 (c), where each

pixel is represented by the maximum value out of the spectral efficiencies received

from all the cells, including macrocells and small-cells. Correlated shadowing for

macrocells is used in the serving area and the log-normal shadowing is used in the

wrap-around area. No shadowing is applied to small-cells. This map provides the
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natural selection of cell to associate with by the cell index from argmax(spj), where

spj is the spectral efficiency of pixel p from cell j.

Based on the spectral efficiency map in Figure 5.4 (c), this user will associate

with the macrocell A (as shown by the arrow in Figure 5.4 (a)) if best-SINR is the

association strategy. If we multiply the P map with the max-spectral-efficiency map,

i.e., without considering the load of cells, the user will be suggested to move to the

small-cell B in the map.

By multiplying the spectral efficiency map of each cell, the load of each cell, and

the probability of moving map of this user, we get a 3D utility map. To show the

results in a 2D map, we represent each pixel with the maximum value of all the

utilities among all the cells at each pixel, which is shown in Figure 5.4 (d).

From Figure 5.4 (d), we can see that cell B has very low utility and cell C and cell

D have the highest utility. The high load is the reason why the utility of small-cell B

becomes low. The user will be suggested to move to small-cell C or D according to

the max-utility map in Figure 5.4 (d).

5.4.5 Outlook: Include Mobility Model

If a user mobility model is included in the system, Equation (5.14) should be

modified to include network load variation during the time period that the current

user is moving to the potential location. For example, when a new user i arrives to

the system at time t, the loads of the potential cells used in the utility function are

not the loads at the moment t, ρj(t), j ∈ C, but the load at the moment when user

i arrives to the potential cell, ρj(t + τj), j ∈ C, where τj is the time needed for user

i to move to cell j. The users considered in the load ρj(t + τj) should include the

coming users and exclude the leaving users during the time interval τj for each cell

j. With the probabilities of moving of the existing users available, the numerator in

Equation (5.14) is then changed to the expected value of the resources consumed by

the existing and the potential users.

5.5 Load-Aware Cell Association

In this section, we develop a baseline load balancing approach without involving

users’ movement. Users are associate with cells not purely based on the received
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Figure 5.4: An example of load balancing achieved by UIL. The location of the user is
shown in (a) as a red cross. The probability map of moving to other locations for
this user in shown in (b). The user will associate will the macrocell A (shown
as an arrow in (a)) if best-SINR is the association strategy according to the
max-spectral-efficiency map in (c). The user will be suggested to move to the
small-cell B if load is not considered. If we use the utility function defined in
this thesis, the user will be suggested to move to the small-cell C or D according
to the max-utility map in (d). The small-cell B has very low utility because it
has a high load.
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SINR, but also on the load of each cell. To some extent, this is also an approach to

push capacity supply to traffic demand through the process of cell association, known

as load-aware cell association. Load-aware cell association has been researched in the

literature intensively as an approach to perform load balancing, yet only one class of

users is assumed (in most cases, best effort users). In this section, we formulate the

load-aware association problem with the same user model and the same optimization

method as in the UIL approach. The performance comparison with the UIL approach

is provided in the next section.

5.5.1 Related Work

In [55], the handoff and cell association are formulated into an iterative optimiza-

tion problem and solved with a distributed load-awareness scheme. In [43] and [45],

with the utility function of the long-term user rate as the objective, the duality the-

ory in optimization is used to tackle the cell association problem. The distributed

solutions inside interpret the loads as the price of the BSs, which lead to a more

balanced traffic load compared to the SINR-based cell association. In [56], a heuristic

solution to the joint problem of cell association and linear beamformer design in a

MIMO HetNets is given.

A typical load-aware cell association optimization problem [43] [45] is defined as

max
aij ,nj

∑
i,j

aij log

(
Wj

nj

log(1 + sij)

)

s.t.
∑
j

aij = 1

∑
i

aij = nj

∑
j

nj = N

aij ∈ 0, 1,

(5.17)

where nj is the number of users associated with cell j, and N is the total number

of users in the system. In this formulation, the objective is the sum of each user’s

utility, log(rij), where rij is the rate of user i with cell j calculated from the Shannon

formula. The log-utility is a proportionally fair function, which encourages allocating

more resources to the low-rate users. In other words, this property encourages load
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balancing. The authors in [43] claim that the optimal resource allocation strategy is

equal allocation when log-utility is adopted, which is the reason why each user gets

the amount of
Wj

nj
resources in Equation (5.17).

As mentioned before, only best effort users are modeled in this optimization prob-

lem, and resources are equally allocated among all users. To be comparable with

the UIL approach we proposed in the previous section, we reformulated the load-

aware association problem in the next section with the user model and the resource

allocation scheme we defined in Section 5.3.

5.5.2 Proposed Scheme

Similar to the utility function defined for the UIL scheme, we define the util-

ity functions for GBR users and BE users separately for load-aware cell association

scheme. Without including the user moving, only two factors are considered in the

function, the spectral efficiency and the load of the potential cell. The utility function

of a GBR user i with a cell j is defined as

Ûij = sij · (1− ρbj(i)), (5.18)

where sij denotes the spectral efficiency of cell j at the current location of user i, and

ρbj(i) has the same definition as in the UIL scheme, the load of GBR users of cell j

when user i arrives to the system. Similarly, the utility function of a BE user k with

a cell j is defined as

Ûkj = skj ·
(1− ρbj(k))

nb
j(k) + 1

. (5.19)

For each new GBR user, an exhaustive search is conducted on all the cells to find

the maximum utility defined in (5.18). The optimization problem is formulated as

max
j

Ûij

s.t. Wj −
∑

i′∈Ug(i)

ai′jwi′j > wij

j ∈ C

(5.20)

The GBR user i is associated to j� from this optimization problem, or associated

to the best-SINR cell if there is no cell feasible. The association matrix aij is updated
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Table 5.1: Simulation parameters in Chapter 5

Parameter Assumption

Macrocell layout Hexagonal grid of 19 × 3 = 57 macrocells

Picocell layout 57 × 2 = 114 picocells (BPP)

Minimum distance between picocells 40 m

Average user number 10 users / cell × 171 cells = 1710 users

Average session length 300 s

Guaranteed bit rate for GBR users 1 Mbps

Percentage of GBR users 50 %

System bandwidth 10 MHz (FDD) at 2 GHz

Shadowing Log-normal, s.d. 4 for LOS, 6 for NLOS

Macrocell Tx power 46 dBm

Picocell Tx power 37 dBm

Antenna gain Macrocell: 17 dBi, picocell: 5 dBi

Traffic model BE and GBR

after each user’s associated cell is obtained.

For a BE user k, the associated cell is argmaxj Ûkj with no constrains.

5.6 Numerical Results

5.6.1 Simulation Setup

In this simulation, ITU urban macrocell (UMa) [57] and 3GPP case 6.2 in release

9 [18] is the scenario used for HetNets. 19 macrocells sites, each of 3 cells with inter

site distance (ISD) of 500 meters, are configured in the system. The locations of the

macrocell sites are fixed and form a hexagonal grid layout. The HetNets consists

of two tiers with outdoor picocells overlaid on the same area of macrocells. The

distribution of picocells is random and uniform. A wrap-around technique is applied

on both macro and small-cells to eliminate the boundary effect.

The channel follows the model 2 in [18] for both macrocells and outdoor pico-

cells, in which a LOS and NLOS power-law path loss model is used. The downlink



CHAPTER 5. PUSHING TRAFFIC DEMAND TO CAPACITY SUPPLY 59

signal experiences path loss and shadowing, while the fast fading is assumed to be

averaged out. The shadowing is correlated based on the models used in [58] [59].

An illustration of the correlated shadowing can be found in Figure 5.4 (c). The user

rate is calculated from the product of resource allocated and the spectral efficiency

reached, both of which are defined in Section 5.3.2. A user suffers interference from

all the macrocells and picocells outside its own serving cell (which may be a macro-

cell or a picocell). Both macrocells and picocells share the same bandwidth, and no

interference coordination or cancellation technique is used. Table 5.1 shows the key

parameters used in the simulations.

Users arrive the system according to a Poisson process and leave the system after

a session length. In each drop of the simulation, the system starts from zero users.

Section 5.6.2 defines the transient and steady state of the simulation, and the per-

formance evaluation inside is time-dependent. After that, all the performances are

evaluated based on the snapshots of the system when the user number is in steady

state, and each snapshot is taken from an individual drop, i.e., the snapshots are

totally independent.

The metrics are evaluated with respect to the increasing spatial traffic demand

heterogeneities under three scenarios: (a) no load balancing with best-SINR associ-

ation strategy, (b) load balancing approach with load-aware association strategy as

introduced in Section 5.5, and (c) load balancing approach with the UIL scheme.

We change the value of σ in LGCP to get user distributions with different spatial

heterogeneities, which are measured by C, the normalized CoV of Voronoi cell area

in the Voronoi tessellations of the user points [24]. When C is equal to 1, the user

distribution forms a PPP.

In the UIL scheme, the probability of moving p is the function of user traffic

class (GBR or BE) and the moving distance. We adopt the result in [48], in which

exponential functions for different traffic classes with respect to moving distances are

obtained based on a survey result. The functions are shown in Section 5.3.3. In this

thesis, we use the discount as the incentive method, and the incentive index is fixed

at 4, which is 80% discount if a user complies with the suggestion. Further work

regarding different levels of incentive can be included. For a user, GBR or BE, the

probability of moving p� is derived from the distance between the current location

and the optimal location (x�, y�). A Bernoulli trial is then conducted to determine

whether this user complies with the suggestion or not. If complies, the user will be
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Figure 5.5: The number of users in the system over time in one drop.

relocated to (x�, y�) and associated with cell j� as discussed in Section 5.4.3. If not,

the user will associate with a cell based on the best-SINR policy.

5.6.2 Transient and Steady State Behavior

The system starts from zero users, and users arrive to the system with exponential

inter-arrival time. We fix the session length at 300 seconds, and users leave the system

after the session expires. In the steady state, the average user number is 1710, i.e.,

10 users per cell. Based on the queue theory, the arrival rate and the departure rate

are calculated from the average number of users divided by the session length.

The system starts from transient state till the number of users reaches in a certain

probability of error regarding to the average user number. Figure 5.5 shows the num-

ber of users changing over time and the transient time accordingly. An exponential

fitting with coefficient λ can be found from the nonlinear regression of the curve in

5.5. The transient time τ is calculated from the equation 1 − e−λτ = 1 − ε, where

ε is the probability of error. In this simulation, we take ε as 1%. Other statistics
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Figure 5.6: Statistics of user movement over time.

including average moving distance (conditional, only the users that move are consid-

ered) and the moving probability are shown in Figure 5.6. As we can see from Figure

5.6, the average moving distance is about 43 meters, and the probability of moving

is about 0.7, which complies with the curves in Figure 5.2 (a) with 80% discount as

the incentive.

The user spatial heterogeneity (CoV) is evaluated with and without UIL. As we

can see from Figure 5.7, the CoV of user spatial distribution is lower in the UIL

scheme. This is due to the fact that UIL suggest users to move to the less loaded cell,

which helps to reduce the degree of user spatial heterogeneity.

The performances hereafter are evaluated based on the snapshots of the system

when the user number is in steady state, and each snapshot is taken from an inde-

pendent drop.

5.6.3 Loads among Different Cells

The load factor of GBR users is defined as ρ in Equation (5.14) in Section 5.4.1.

If we take the standard deviation of ρj (j ∈ C), denoted as stdρ, it can be used as a

measure to indicate the degree of network-wide load balance. The lower the stdρ is, the

more balanced the network is. Figure 5.8 shows the stdρ with respect to user spatial

heterogeneities under different load balancing strategies. First, it is obvious that the
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Figure 5.8: The standard deviation of GBR user load (ρ) of all the cells with respect
to user spatial heterogeneities under different load balancing strategies.

network is becoming more imbalanced when the user spatial heterogeneity (traffic

demand heterogeneity) increases in all the three schemes. Second, as we can see, stdρ

is the lowest in the UIL scheme, highest in the best-SINR scheme, and the load-aware

cell association scheme is in the middle, which shows that the UIL approach improves

network-wide load balance substantially, and the load-aware association approach is

also an effective approach to do load-balancing compare to the best-SINR strategy

without load balancing.

5.6.4 GBR Users Outage

As shown in Figure 5.9, the outage percentage is the lowest (best) with the UIL

scheme and the highest (worst) with the best-SINR strategy. The load-aware asso-

ciation strategy as an approach to load balancing without the involvement of user

relocation performs in the middle. The outage percentages rise quickly with the in-

crease of user spatial heterogeneity (i.e., traffic demand heterogeneity) in all the three

strategies.
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Figure 5.9: The outage percentage of GBR users with respect to user spatial hetero-
geneities under different load balancing strategies. Each dot, cross, and plus
sign represents the result of a simulation drop in best-SINR, load-aware cell
association and UIL scheme, respectively. The lines are the polynomial curve
fitting with n = 3.
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Figure 5.10: Mean rate of all the GBR users in the system with respect to user spatial
heterogeneities under different load balancing strategies. Each dot, cross, and
plus sign represents the result of a simulation drop in best-SINR, load-aware cell
association and UIL scheme, respectively. The lines are the polynomial curve
fitting with n = 3.

The reason is when the user spatial heterogeneity increases, the traffic demand

may be highly clustered in some areas that exceed the capacities of the associated

cells, which results in higher GBR user outage. Load-aware cell association strategy

takes the load factor into consideration, and thus performs better than the best-SINR

strategy without load balancing. The UIL scheme outperforms the load-aware asso-

ciation by combining spatial relocation (with probability) and load factor together.

5.6.5 Mean User Rate

The mean user rates of GBR users and BE users are calculated separately as shown

in Figure 5.10 and Figure 5.11, respectively. They all have the same downward trends

with the increase of user spatial heterogeneity. For GBR users, the UIL scheme

performs the best, the load-aware association strategy comes next, and the best-

SINR strategy with no load balancing performs the worst. This can be explained
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Figure 5.11: Mean rate of all the BE users in the system with respect to user spatial
heterogeneities under different load balancing strategies. Each dot, cross, and
plus sign represents the result of a simulation drop in best-SINR, load-aware cell
association and UIL scheme, respectively. The lines are the polynomial curve
fitting with n = 3.

with the same reason mentioned for the outage percentage. However, for BE users,

the UIL scheme still performs the best but the load-aware cell association strategy

does not surpass the best-SINR strategy. This is due to the fact that the load-

aware strategy may associate a GBR user to a lightly loaded neighbor cell with lower

spectral efficiency received, which results in a higher resource consumption. Because

of the priority of GBR users, less resources are left for BE users, which brings a worse

performance for the load-aware association strategy in terms of mean user rate.

5.6.6 Fairness Index

As in Section 4.3.2, we use Jain’s index to measure the fairness of user rate.

Different from Section 4.3.2, GBR users and BE users are evaluated separately. Figure

5.12 and Figure 5.13 show the fairness index of GBR user rate and BE user rate versus

user spatial heterogeneity under different network configurations, respectively. Similar
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Figure 5.12: Jain’s index of rate of all the GBR users in the system with respect to
user spatial heterogeneities under different load balancing strategies.

to the user rate, the UIL shceme performs the best, while load-aware association

performs better than best-SINR with GBR users, and worse with BE users. This

is because the load-aware cell association strategy introduced in this thesis provides

higher priority for GBR users.

5.7 Summary

In this section, a novel load balancing approach in cellular networks is proposed

as the second approach to load balancing. User-in-loop as the spatial traffic shaping

method is the enabler of the approach, in which the traffic demand (users) is pushed

to the capacity supply (BSs).

A user application model consisting of GBR and BE is considered in this chapter

with corresponding resource allocation policy. To better evaluate the performance,

a load-aware cell association strategy is introduced with the same user traffic model

and resource allocation policy as the UIL scheme. Numerical results show that the
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Figure 5.13: Jain’s index of rate of all the BE users in the system with respect to
user spatial heterogeneities under different load balancing strategies.

proposed load balancing approach with UIL outperforms the load balancing approach

with load-aware cell association strategy and the non-load-balancing approach with

best-SINR association strategy significantly.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Cellular networks are becoming increasingly heterogeneous in two different di-

mensions. First in the capacity supply dimension, the architecture of the network is

becoming increasingly heterogeneous, with small-cells (such as picocells and femto-

cells) layered upon traditional macrocells. Second, from the traffic demand side, new

applications with diversified traffic patterns are emerging everyday with the prolif-

eration of smart mobile devices (e.g., smart phones and tablets). In this thesis, we

use the term “HetHetNets” to denote the cellular networks that have heterogeneous

capacity supply and heterogeneous traffic demand.

Instead of being one dimensional heterogeneous in the network side (capacity

supply) as in the literature, the research in this thesis is taken under HetHetNets,

with emphasis on user side (traffic demand).

This thesis raises three questions: (1) How to model the heterogeneous user dis-

tribution in spatial domain (heterogeneous traffic demand)? (2) What is the impact

of user spatial heterogeneity on heterogeneous cellular networks (impact of hetero-

geneous traffic demand on heterogeneous capacity supply)? (3) What are the solutions

to combat the load imbalance between the traffic demand and the capacity supply in

HetHetNets?

To answer the first question, users are modeled with a doubly stochastic Poisson

process, which models the user spatial distribution from homogeneous to extremely

heterogeneous with a single parameter. The degree of the spatial heterogeneity is

measured by a single positive real number C based on the Voronoi and Delaunay

tessellations, an analogy of the inter-arrival time measure in one dimensional time

69
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domain. Besides being spatially heterogeneous, the user traffic is also heterogeneous

in this thesis. Finite rate demand model is investigated compared to the commonly

used best effort user model. Two user traffic classes, which are guaranteed bit rate

and best effort, are further investigated with the corresponding resource allocation

scheme that provides priority to the GBR users.

The second question is partly answered in the next section. The impact of user

spatial heterogeneity (captured by C) on the performance of downlink cellular net-

works is obtained. We find that the network performance metrics deteriorate signif-

icantly with increasing C if the user locations are uncorrelated with the locations of

the macro and small-cell BSs.

Cluster analysis on the non-uniform user points is utilized to find the cluster cen-

troids as the potential locations for small-cells. A selection method that considers the

relative distance between user to macrocells and user to potential small-cells is intro-

duced to choose the clusters to deploy small-cells. Simulation results show that the

network performance can improve substantially with increasing C if we take advan-

tage of user spatial heterogeneity to deploy small-cells in the appropriate locations.

This is the first approach to the third question by pushing the capacity supply to the

traffic demand, and it also answers the second question when the locations of BSs

and users are correlated.

Other than pushing capacity supply to traffic demand, a novel traffic-shaping load

balancing approach in cellular networks through the recently developed user-in-the-

loop (UIL) concept is proposed. In this approach, users are encouraged to move to

a better location that has higher spectral efficiency and/or a lower traffic load. The

utility function proposed in this approach jointly combines the spectral efficiency, the

traffic load and the probability of user moving. To better evaluate the performance,

a load-aware cell association strategy is introduced with the same user traffic model

and resource allocation policy as in the UIL scheme. Numerical results show that the

proposed load balancing approach with UIL outperforms the load balancing approach

with load-aware cell association strategy and the non-load-balancing approach with

best-SINR association strategy significantly. This is the second approach to deal with

the third question by pushing the traffic demand to the capacity supply.
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6.2 Future Work

6.2.1 Pushing Capacity Supply to Traffic Demand

The cluster analysis approach to find small-cell locations in this thesis can also

be used to locate the user relays that are to be activated to serve the users around in

5G networks. Weighted k-means clustering can be applied to model the users with

different rate demand. The correlation among users and the cross-correlation between

the users and BSs can also be included in the user spatial model [60]. As LGCPs are

tractable for mathematical analysis [61], future work may involve analytical expres-

sions for network performance.

6.2.2 Pushing Traffic Demand to Capacity Supply

The proposed load balancing approach can be extended with the temporal UIL.

Similar to the policies that have been implemented in power supply companies, tem-

poral UIL encourages users to postpone a heavy data application in busy hours.

Limited back-haul can also be included in the model. More incentive methods should

also be investigated in the UIL approach for load balancing. With the machine type

of communications becoming more popular, the UIL concept can be extended to the

machine nodes, which are easier to be controlled to move compared to mankind users.

A different utility function taking other possible factors or with different weights of

the factors can also be explored.
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